Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Nat Commun ; 15(1): 1980, 2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38438367

ABSTRACT

The sterile insect technique is based on the overflooding of a target population with released sterile males inducing sterility in the wild female population. It has proven to be effective against several insect pest species of agricultural and veterinary importance and is under development for Aedes mosquitoes. Here, we show that the release of sterile males at high sterile male to wild female ratios may also impact the target female population through mating harassment. Under laboratory conditions, male to female ratios above 50 to 1 reduce the longevity of female Aedes mosquitoes by reducing their feeding success. Under controlled conditions, blood uptake of females from an artificial host or from a mouse and biting rates on humans are also reduced. Finally, in a field trial conducted in a 1.17 ha area in China, the female biting rate is reduced by 80%, concurrent to a reduction of female mosquito density of 40% due to the swarming of males around humans attempting to mate with the female mosquitoes. This suggests that the sterile insect technique does not only suppress mosquito vector populations through the induction of sterility, but may also reduce disease transmission due to increased female mortality and lower host contact.


Subject(s)
Aedes , Infertility, Male , Humans , Female , Male , Animals , Mice , Reproduction , Cell Communication , Insecta
2.
Sci Rep ; 13(1): 16167, 2023 09 27.
Article in English | MEDLINE | ID: mdl-37758733

ABSTRACT

Genetic sexing strains (GSS), such as the Ceratitis capitata (medfly) VIENNA 8 strain, facilitate male-only releases and improve the efficiency and cost-effectiveness of sterile insect technique (SIT) applications. Laboratory domestication may reduce their genetic diversity and mating behaviour and hence, refreshment with wild genetic material is frequently needed. As wild males do not carry the T(Y;A) translocation, and wild females do not easily conform to artificial oviposition, the genetic refreshment of this GSS is a challenging and time-consuming process. In the present study, we report the development of a novel medfly GSS, which is based on a viable homozygous T(XX;AA) translocation using the same selectable markers, the white pupae and temperature-sensitive lethal genes. This allows the en masse cross of T(XX;AA) females with wild males, and the backcrossing of F1 males with the T(XX;AA) females thus facilitating the re-establishment of the GSS as well as its genetic refreshment. The rearing efficiency and mating competitiveness of the novel GSS are similar to those of the T(Y;A)-based VIENNA 8 GSS. However, its advantage to easily allow the genetic refreshment is of great importance as it can ensure the mass production of high-quality males and enhanced efficacy of operational SIT programs.


Subject(s)
Ceratitis capitata , Infertility, Male , Animals , Female , Humans , Male , Ceratitis capitata/genetics , Pest Control, Biological/methods , Reproduction/genetics , Translocation, Genetic , Infertility, Male/genetics
3.
Insects ; 14(2)2023 Feb 18.
Article in English | MEDLINE | ID: mdl-36835776

ABSTRACT

Pilot programs of the sterile insect technique (SIT) against Aedes aegypti may rely on importing significant and consistent numbers of high-quality sterile males from a distant mass rearing factory. As such, long-distance mass transport of sterile males may contribute to meet this requirement if their survival and quality are not compromised. This study therefore aimed to develop and assess a novel method for long-distance shipments of sterile male mosquitoes from the laboratory to the field. Different types of mosquito compaction boxes in addition to a simulation of the transport of marked and unmarked sterile males were assessed in terms of survival rates/recovery rates, flight ability and morphological damage to the mosquitoes. The novel mass transport protocol allowed long-distance shipments of sterile male mosquitoes for up to four days with a nonsignificant impact on survival (>90% for 48 h of transport and between 50 and 70% for 96 h depending on the type of mosquito compaction box), flight ability, and damage. In addition, a one-day recovery period for transported mosquitoes post-transport increased the escaping ability of sterile males by more than 20%. This novel system for the long-distance mass transport of mosquitoes may therefore be used to ship sterile males worldwide for journeys of two to four days. This study demonstrated that the protocol can be used for the standard mass transport of marked or unmarked chilled Aedes mosquitoes required for the SIT or other related genetic control programs.

4.
Insects ; 14(1)2023 Jan 15.
Article in English | MEDLINE | ID: mdl-36662020

ABSTRACT

The sterile insect technique (SIT) is based on the inundatory field release of a target pest following their reproductive sterilization via exposure to radiation. Until recently, gamma irradiation from isotopic sources has been the most widely used in SIT programs. As isotopic sources are becoming increasingly expensive, especially for small programs, and regulations surrounding their procurement and shipment increasingly strict, irradiation capacity is one of the limiting factors in smaller or newly developing SIT projects. For this reason, the possibility of using X-ray irradiators has been evaluated in the recent decade. The availability of "off-the-shelf" blood X-ray irradiators that meet the technical requirements for insect irradiation can provide irradiation capacity for those SIT projects in which the acquisition of gamma ray irradiators is not feasible. Following the recent technical characterization of a Raycell MK2 X-ray blood irradiator, it was found in this study, that MK2 instruments were suitable for the sterilization of fruit flies, tsetse flies and mosquitoes, inducing comparable, even slightly higher, sterility levels compared to those achieved by gamma ray irradiation. This, together with its estimated processing efficiency, shows that MK2 irradiators are suitable for small- to mid-sized SIT programs.

5.
Front Bioeng Biotechnol ; 10: 942654, 2022.
Article in English | MEDLINE | ID: mdl-36172019

ABSTRACT

The developmental stage of the mosquito is one of the main factors that affect its response to ionizing radiation. Irradiation of adults has been reported to have beneficial effects. However, the main challenge is to immobilize and compact a large number of adult male mosquitoes for homogenous irradiation with minimal deleterious effects on their quality. The present study investigates the use of nitrogen in the irradiation of adult Aedes albopictus and Ae. aegypti. Irradiation in nitrogen (N2) and in air after being treated with nitrogen (PreN2) were compared with irradiation in air at gamma radiation doses of 0, 55, 70, 90, 110, and 125 Gy. In both species, approximately 0% egg hatch rate was observed following doses above 55 Gy in air versus 70 Gy in PreN2 and 90 Gy in N2. Males irradiated at a high mosquito density showed similar egg hatch rates as those irradiated at a low density. Nitrogen treatments showed beneficial effects on the longevity of irradiated males for a given dose, revealing the radioprotective effect of anoxia. However, irradiation in N2 or PreN2 slightly reduced the male flight ability. Nitrogen treatment was found to be a reliable method for adult mosquito immobilization. Overall, our results demonstrated that nitrogen may be useful in adult Aedes mass irradiation. The best option seems to be PreN2 since it reduces the immobilization duration and requires a lower dose than that required in the N2 environment to achieve full sterility but with similar effects on male quality. However, further studies are necessary to develop standardized procedures including containers, time and pressure for flushing with nitrogen, immobilization duration considering mosquito species, age, and density.

6.
Front Bioeng Biotechnol ; 10: 876675, 2022.
Article in English | MEDLINE | ID: mdl-35923573

ABSTRACT

Successful implementation of the sterile insect technique (SIT) against Aedes aegypti and Aedes albopictus relies on maintaining a consistent release of high-quality sterile males. Affordable, rapid, practical quality control tools based on the male's flight ability (ability to escape from a flight device) may contribute to meeting this requirement. Therefore, this study aims to standardize the use of the original FAO/IAEA rapid quality control flight test device (FTD) (version 1.0), while improving handling conditions and reducing the device's overall cost by assessing factors that could impact the subsequent flight ability of Aedes mosquitoes. The new FTD (version 1.1) is easier to use. The most important factors affecting escape rates were found to be tube color (or "shade"), the combined use of a lure and fan, mosquito species, and mosquito age and density (25; 50; 75; 100 males). Other factors measured but found to be less important were the duration of the test (30, 60, 90, 120 min), fan speed (normal 3000 rpm vs. high 6000 rpm), and mosquito strain origin. In addition, a cheaper version of the FTD (version 2.0) that holds eight individual tubes instead of 40 was designed and successfully validated against the new FTD (version 1.1). It was sensitive enough to distinguish between the effects of cold stress and high irradiation dose. Therefore, the eight-tube FTD may be used to assess Aedes' flight ability. This study demonstrated that the new designs (versions 1.1 and 2.0) of the FTD could be used for standard routine quality assessments of Aedes mosquitoes required for an SIT and other male release-based programs.

7.
Sci Rep ; 12(1): 2561, 2022 02 15.
Article in English | MEDLINE | ID: mdl-35169252

ABSTRACT

The sterile insect technique is a promising environmentally friendly method for mosquito control. This technique involves releasing laboratory-produced sterile males into a target field site, and its effectiveness may be affected by the extent of adult mosquito predation. Sterile males undergo several treatments. Therefore, it is vital to understand which treatments are essential in minimizing risks to predation once released. The present study investigates the predation propensity of four mantis species (Phyllocrania paradoxa, Hymenopus coronatus, Blepharopsis mendica, Deroplatys desiccata) and two gecko species (Phelsuma standingi, P. laticauda) on adult Aedes aegypti, Ae. albopictus and Anopheles arabiensis mosquitoes in a laboratory setting. First, any inherent predation preferences regarding mosquito species and sex were evaluated. Subsequently, the effects of chilling, marking, and irradiation, on predation rates were assessed. The selected predators effectively preyed on all mosquito species regardless of the treatment. Predation propensity varied over days for the same individuals and between predator individuals. Overall, there was no impact of laboratory treatments of sterile males on the relative risk of predation by the test predators, unless purposely exposed to double the required sterilizing irradiation dose. Further investigations on standardized predation trials may lead to additional quality control tools for irradiated mosquitoes.


Subject(s)
Aedes , Lizards , Mantodea , Mosquito Control/methods , Predatory Behavior , Animals
8.
Insects ; 12(1)2021 Jan 12.
Article in English | MEDLINE | ID: mdl-33445407

ABSTRACT

A mosquito's life cycle includes an aquatic phase. Water quality is therefore an important determinant of whether or not the female mosquitoes will lay their eggs and the resulting immature stages will survive and successfully complete their development to the adult stage. In response to variations in laboratory rearing outputs, there is a need to investigate the effect of tap water (TW) (in relation to water hardness and electrical conductivity) on mosquito development, productivity and resulting adult quality. In this study, we compared the respective responses of Aedes aegypti and Ae. albopictus to different water hardness/electrical conductivity. First-instar larvae were reared in either 100% water purified through reverse osmosis (ROW) (low water hardness/electrical conductivity), 100% TW (high water hardness/electrical conductivity) or a 80:20, 50:50, 20:80 mix of ROW and TW. The immature development time, pupation rate, adult emergence, body size, and longevity were determined. Overall, TW (with higher hardness and electrical conductivity) was associated with increased time to pupation, decreased pupal production, female body size in both species and longevity in Ae. albopictus only. However, Ae. albopictus was more sensitive to high water hardness/EC than Ae. aegypti. Moreover, in all water hardness/electrical conductivity levels tested, Ae. aegypti developed faster than Ae. albopictus. Conversely, Ae. albopictus adults survived longer than Ae. aegypti. These results imply that water with hardness of more than 140 mg/l CaCO3 or electrical conductivity more than 368 µS/cm cannot be recommended for the optimal rearing of Aedes mosquitoes and highlight the need to consider the level of water hardness/electrical conductivity when rearing Aedes mosquitoes for release purposes.

9.
Insects ; 11(11)2020 Nov 13.
Article in English | MEDLINE | ID: mdl-33202973

ABSTRACT

Successful implementation of the sterile insect technique (SIT) against Aedes albopictus and Anopheles arabiensis relies on a continuous supply of sterile males. To meet this requirement, optimization of the mass-rearing techniques is needed. This study, therefore, aims to assess a new mass-rearing cage (MRC) in terms of egg production efficiency and egg hatch rate (quality). In addition, adult survival was evaluated based on a cage adult-index for Ae. albopictus. Moreover, the cage's suitability for use in mass An. arabiensis egg production was compared to that of the FAO/IAEA Anopheles reference cage. In Ae. albopictus rearing, the new MRC produced 1,112,110 eggs per cage following six blood meals, with minimum loss of eggs in the egging water. Furthermore, the adult index gave a good proxy of daily mortality rates in Ae. albopictus. In An. arabiensis rearing, about 130,000 eggs per egg batch were collected both from the new and the reference MRC. These findings suggest that the new MRC prototype is efficient in terms of egg production and can be used for mass-rearing in SIT programs targeting Ae. albopictus as well as An. arabiensis. The adult index was also positively validated for the detection of unusual mortality rates in Ae. albopictus mass-rearing facilities. Overall, the new MRC has shown several advantages; however, further improvements are necessary to minimize escapes during the egg collection processes.

10.
Parasit Vectors ; 13(1): 198, 2020 Apr 17.
Article in English | MEDLINE | ID: mdl-32303257

ABSTRACT

BACKGROUND: Radiation induced sterility is the basis of the Sterile Insect Technique, by which a target insect pest population is suppressed by releasing artificially reared sterile males of the pest species in overflooding numbers over a target site. In order for the sterile males to be of high biological quality, effective standard irradiation protocols are required. Following studies investigating the effects of mosquito pupae irradiation in water versus in air, there is a need to investigate the oxy-regulatory behavior of mosquito pupae in water to better understand the consequences of irradiation in hypoxic versus normoxic conditions. METHODS: Pupae of Aedes aegypti, Ae. albopictus, and Anopheles arabiensis were submerged in water inside air-tight 2 ml glass vials at a density of 100 pupae/ml and the dissolved oxygen (DO) levels in the water were measured and plotted over time. In addition, male pupae of Ae. aegypti (aged 40-44 h), Ae. albopictus (aged 40-44 h) and An. arabiensis (aged 20-24 h) were irradiated in a gammacell220 at increasing doses in either hypoxic (water with < 0.5% O2 content) or normoxic (in air) conditions. The males were then mated to virgin females and resulting eggs were checked for induced sterility. RESULTS: All three species depleted the water of DO to levels under 0.5% within 30 minutes, with An. arabiensis consuming oxygen the fastest at under 10 minutes. Following irradiation, the protective effect of hypoxia was observed across species and doses (P < 0.0001), increasing at higher doses. This effect was most pronounced in An. arabiensis. CONCLUSIONS: The consumption of dissolved oxygen by pupae submerged in water was significantly different between species, indicating that their oxy-regulatory capacity seems to have possibly evolved according to their preferred breeding site characteristics. This needs to be considered when sterilizing male mosquitoes at pupal stage in water. Depending on species, their DO consumption rates and their density, irradiation doses needed to achieve full sterility may vary significantly. Further assessments are required to ascertain optimal conditions in terms of ambient atmosphere during pupal irradiation to produce competitive sterile males, and temperature and density dependent effects are expected.


Subject(s)
Aedes/radiation effects , Anopheles/radiation effects , Hypoxia , Pupa/radiation effects , Sterilization/methods , Animals , Female , Infertility, Male , Male , Mosquito Control/methods , Mosquito Vectors/radiation effects , Water/chemistry
11.
PLoS Negl Trop Dis ; 13(9): e0007775, 2019 09.
Article in English | MEDLINE | ID: mdl-31553724

ABSTRACT

INTRODUCTION: The widespread emergence of resistance to insecticides used to control adult Aedes mosquitoes has made traditional control strategies inadequate for the reduction of various vector populations. Therefore, complementary vector control methods, such as the Sterile Insect Technique, are needed to enhance existing efforts. The technique relies on the rearing and release of large numbers of sterile males, and the development of efficient and standardized mass-rearing procedures and tools is essential for its application against medically important mosquitoes. METHODS: In the effort to reduce the cost of the rearing process, a prototype low-cost plexiglass mass-rearing cage has been developed and tested for egg production and egg hatch rate in comparison to the current Food and Agriculture Organization/International Atomic Energy Agency (FAO/IAEA) stainless-steel cage. Additionally, an adult-index was validated and used as a proxy to estimate the mosquito survival rates by counting the number of male and female mosquitoes that were resting within each of the 6 squares at a given point of time each day in the cage. RESULTS: The study has shown that the prototype mass-rearing cage is cheap and is as efficient as the FAO/IAEA stainless-steel cage in terms of egg production, with even better overall egg hatch rate. The mean numbers of eggs per cage, after seven cycles of blood feeding and egg collection, were 969,789 ± 138,101 and 779,970 ± 123,042, corresponding to 81 ± 11 and 65 ± 10 eggs per female over her lifespan, in the prototype and the stainless-steel-mass-rearing cages, respectively. The longevity of adult male and female mosquitoes was not affected by cage type and, the adult-index could be considered as an appropriate proxy for survival. Moreover, the mass-rearing cage prototype is easy to handle and transport and improves economic and logistic efficiency. CONCLUSION: The low-cost mass-rearing prototype cage can be recommended to produce Ae. aegypti in the context of rear and release techniques. The proposed adult-index can be used as a quick proxy of mosquito survival rates in mass-rearing settings.


Subject(s)
Aedes/physiology , Housing, Animal/economics , Aedes/growth & development , Animal Husbandry/instrumentation , Animal Husbandry/methods , Animals , Female , Housing, Animal/standards , Male , Mosquito Vectors
12.
Parasit Vectors ; 12(1): 435, 2019 Sep 09.
Article in English | MEDLINE | ID: mdl-31500662

ABSTRACT

BACKGROUND: The sterile insect technique (SIT) for use against mosquitoes consists of several steps including the production of the target species in large numbers, the separation of males and females, the sterilization of the males, and the packing, transport and release of the sterile males at the target site. The sterility of the males is the basis of the technique; for this, efficient and standardized irradiation methods are needed to ensure that the required level of sterility is reliably and reproducibly achieved. While several reports have found that certain biological factors, handling methods and varying irradiation procedures can alter the level of induced sterility in insects, few studies exist in which the methodologies are adequately described and discussed for the reproductive sterilization of mosquitoes. Numerous irradiation studies on mosquito pupae have resulted in varying levels of sterility. Therefore, we initiated a series of small-scale experiments to first investigate variable parameters that may influence dose-response in mosquito pupae, and secondly, identify those factors that potentially have a significantly large effect and need further attention. METHODS: In this study, we compiled the results of a series of experiments investigating variable parameters such as pupal age (Aedes aegypti), pupal size (Ae. aegypti), geographical origin of mosquito strains (Ae. aegypti and Ae. albopictus), exposure methods (in wet versus dry conditions, Ae. albopictus) and subsequently in low versus high oxygen environments [submerged in water (low O2 (< 5 %)] and in air [high O2 (~ 21 %)] on the radiosensitivity of male pupae (Ae. aegypti, Ae. albopictus and Anopheles arabiensis). RESULTS: Results indicate that radiosensitvity of Ae. aegypti decreases with increasing pupal age (99% induced sterility in youngest pupae, compared to 93% in oldest pupae), but does not change with differences in pupal size (P = 0.94). Differing geographical origin of the same mosquito species did not result in variations in radiosensitivity in Ae. aegypti pupae [Brazil, Indonesia, France (La Reunion), Thailand] or Ae. albopictus [Italy, France (La Reunion)]. Differences in induced sterility were seen following irradiation of pupae that were in wet versus dry conditions, which led to further tests showing significant radioprotective effects of oxygen depletion during irradiation procedures in three tested mosquito species, as seen in other insects. CONCLUSIONS: These findings infer the necessity to further evaluate significant factors and reassess dose-response for mosquitoes with controlled variables to be able to formulate protocols to achieve reliable and reproducible levels of sterility for application in the frame of the SIT.


Subject(s)
Aedes/radiation effects , Anopheles/radiation effects , Mosquito Vectors/radiation effects , Pupa/radiation effects , Radiation Tolerance , Whole-Body Irradiation/standards , Animals , Entomology/standards , Male
13.
Parasite ; 26: 57, 2019.
Article in English | MEDLINE | ID: mdl-31535969

ABSTRACT

The mass production of mosquitoes is becoming more wide-spread due to the increased application of the sterile insect technique (SIT) and other genetic control programmes. Due to the variable availability and high cost of the bovine liver powder (BLP) constituent of many current larval diets, there is an urgent demand for new ingredients in order to support sustainable and efficient mosquito production while reducing rearing cost, without affecting the quality of the insects produced. Two black soldier fly (BSF) powder-based diet formulations (50% tuna meal, 35% BSF powder, 15% brewer's yeast and 50% tuna meal + 50% BSF powder) were tested for their suitability to support the development of Aedes aegypti and Ae. albopictus mosquitoes in mass-rearing conditions. Overall, the results indicate that the use of the BSF powder did not negatively impact the development and quality of the produced insects in terms of time to pupation, adult production and male flight ability. Furthermore, depending on the species and diet formulations, there were improvements in some parameters such as female body size, egg production, egg hatch rate and male longevity. BSF powder is a valuable ingredient that can effectively replace costly BLP for the mass production of high quality Ae. aegypti and Ae. albopictus mosquitoes. Both diet formulations can be used for Ae. aegypti showing high plasticity to nutrition sources. However, for Ae. albopictus we recommend the combination including brewer's yeast.


TITLE: La poudre de larves de mouche-soldat noire (Hermetia illucens) comme ingrédient alimentaire pour l'élevage de masse des moustiques Aedes. ABSTRACT: L'élevage de masse de moustiques est de plus en plus répandu en raison de l'application de la technique de l'insecte stérile et d'autres techniques de lutte génétique. En raison de la disponibilité variable et du coût élevé de la poudre de foie de bovin, ingrédient de nombreux régimes larvaires, il devient urgent de trouver de nouveaux ingrédients afin de soutenir une production durable et efficace des moustiques, en réduisant les coûts d'élevage sans toutefois affecter la qualité des insectes produits. Deux formulations de régime à base de poudre de mouche-soldat noire (50 % farine de thon + 35 % poudre de mouche-soldat noire + 15 % levure de bière et 50 % farine de thon + 50 % poudre de mouche-soldat noire) ont été évaluées pour déterminer leur capacité à soutenir le développement larvaire d'Aedes aegypti et Ae. albopictus dans des conditions d'élevage de masse. Dans l'ensemble, les résultats indiquent que l'utilisation de la poudre de mouche-soldat noire n'a pas d'impact négatif sur le développement larvaire et la qualité des insectes produits en termes de temps de développement, de production d'adultes et de capacité de vol des mâles. En outre, en fonction de l'espèce et de la formulation du régime, certains paramètres tels que la taille des femelles, la production d'œufs, le taux d'éclosion des œufs et la longévité des mâles ont été améliorés. La poudre de mouche-soldat noire est un ingrédient de valeur qui peut remplacer efficacement la coûteuse poudre de foie de bovin pour la production en masse de moustiques Ae aegypti et Ae. albopictus de grande qualité. Les deux formules de régime peuvent être utilisées pour Ae. aegypti qui montre une grande plasticité à la source de nutrition. Cependant, pour Ae. albopictus, nous recommandons la formulation comprenant la levure de bière.


Subject(s)
Aedes/growth & development , Animal Feed/analysis , Powders/administration & dosage , Simuliidae/chemistry , Animals , Female , Larva/growth & development , Powders/chemistry
14.
Sci Rep ; 9(1): 11403, 2019 08 06.
Article in English | MEDLINE | ID: mdl-31388041

ABSTRACT

The black soldier fly, yellow mealworm and house fly are known for their wide distribution, ease of breeding, and environmental and nutritional attributes. Diets based on these fly proteins for the rearing of mosquito larvae are more accessible and affordable when compared to the reference IAEA diet which consists largely of costly livestock products such as bovine liver powder. Following a step-by-step assessment, we developed diet mixtures based on insect meal for the optimal mass production of Aedes albopictus and Ae. aegypti. Based on the assessed parameters including mosquito egg hatch, body size, flight ability, longevity and diet cost reduction, two mixtures are recommended: 1/2 tuna meal (TM) + 7/20 black soldier fly (BSF) + 3/20 brewer's yeast and 1/2 TM + 1/2 BSF. These findings, which could be adapted to other mosquito species, provide alternative protein sources for mass rearing insects for genetic control strategies.


Subject(s)
Aedes/physiology , Animal Feed , Breeding/methods , Laboratory Animal Science/methods , Simuliidae , Animals , Female , Larva/physiology , Male , Mosquito Control/methods , Pest Control, Biological/methods
15.
PLoS One ; 13(11): e0205966, 2018.
Article in English | MEDLINE | ID: mdl-30403762

ABSTRACT

Swarming is a key part of the natural system of reproduction of anopheline mosquito populations, and a better understanding of swarming and mating systems in a targeted species in its natural habitat would contribute to better design control strategies with a greater chance of success. Our study investigated the monthly occurrence of swarming and the mating frequency (within swarms) of Anopheles arabiensis in Dioulassoba, Burkina Faso and their relationship with local environmental factors. Mosquitoes collected from swarms were described in terms of body size, recent sugar meal intake, and female repletion, insemination, and Plasmodium falciparum infection status. Swarms of An. arabiensis were found in each month of the year. Both start and end times of swarming varied significantly between months, correlating with the time of sunset. Swarming mostly started after or coincided with sunset from late July to early October but occurred before sunset from late October to early July. Swarming duration, the number of mosquitoes and mating pairs per swarm, and time to first mating were significantly different between months in an inverse relationship with the monthly rainfall. The number of mating pairs was strongly and positively correlated with swarm size. Almost all the females caught in copula were inseminated but a very few were blood fed; no P. falciparum infection was observed. Males caught in copula and in solo were similar in body size and in the proportion which had taken a recent sugar meal. Our investigations showed that An. arabiensis reproductive activities are most frequent during the dry season, suggesting either the species' preference for dry climatic conditions or a lack of available breeding sites during the rainy season due to the seasonal flooding in this area. Targeting interventions to kill mosquitoes in swarms or to achieve an over-flooding ratio of sterile males during the rainy season would increase their efficiency in reducing the population density of this vector.


Subject(s)
Anopheles/physiology , Ecological and Environmental Phenomena , Sexual Behavior, Animal/physiology , Urban Population , Animals , Burkina Faso , Climate , Feeding Behavior , Female , Humidity , Male , Rain , Reproduction , Sunlight , Temperature , Time Factors , Wings, Animal/anatomy & histology
16.
Parasit Vectors ; 10(1): 619, 2017 12 22.
Article in English | MEDLINE | ID: mdl-29273056

ABSTRACT

BACKGROUND: Larval nutrition, particularly diet quality, is a key driver in providing sufficient numbers of high quality mosquitoes for biological control strategies such as the sterile insect technique. The diet currently available to mass rear Anopheles arabiensis, referred here to as the "IAEA diet", is facing high costs and difficulties concerning the availability of the bovine liver powder component. To promote more affordable and sustainable mosquito production, the present study aimed to find alternative diet mixtures. Eight cheaper diet mixtures comprised of varying proportions of tuna meal (TM), bovine liver powder (BLP), brewer's yeast (BY), and chickpea (CP) were developed and evaluated through a step by step assessment on An. arabiensis larvae and adult life history traits, in comparison to the IAEA diet which served as a basis and standard. RESULTS: Four mixtures were found to be effective regarding larval survival to pupation and to emergence, egg productivity, adult body size and longevity. These results suggest that these different diet mixtures have a similar nutritional value that support the optimal development of An. arabiensis larvae and enhance adult biological quality and production efficiency, and thus could be used for mass rearing. CONCLUSIONS: Our study demonstrated that four different diet mixtures, 40 to 92% cheaper than the IAEA diet, can result in a positive assessment of the mosquitoes' life history traits, indicating that this mosquito species can be effectively mass reared with a significant reduction in costs. The mixture comprised of TM + BY + CP is the preferred choice as it does not include BLP and thus reduces the cost by 92% compared to the IAEA diet.


Subject(s)
Animal Feed/economics , Anopheles/growth & development , Cost-Benefit Analysis , Diet/methods , Entomology/methods , Animals
SELECTION OF CITATIONS
SEARCH DETAIL
...